
Form Approved7 REPORT DOCUMENTATION PAGE No. 0704-0188

a Ihonw per rempme Wck4N ft tim for re wgonste eea8rchtmg exlting data sources gttevg and maurg Me Oaw
*V thi bWdsqn stuime or OW othr mped o Vit collection d iroimadw x including suggemiu to reducig this bwsn, to Washng=o

A D-A 243 377 1215 .jfemon Da Highway. SiAs 1204. Ainon VA 22202-4302. ard to the Office of Infotabon and Flegul Ay ie o

IREPORT DATE 3. REPORT TYPE AND DATES COVERED

IFinal: 12 Dec 1990 tp 01 Jun 1993
4. i'iU Do,,L- , FUNDING NUMBERS

Alsys, AIsyCOMP 043, Version 5.3, Macintosh llcx (Host & Target), i |
901221W1. 11104 '-5

6. AUTHOR(S) " .

Wright-Patterson AFB, Dayton, OH W
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 AVF-VSR-441.0891
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E1 14
Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Alsys, AlsyCOMP_043, Version 5.3, Wright-Patterson AFB, Macintosh llcx (Host & Target),ACVC 1.11.

91-16068

14. SUBJECT TERMS 15 NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16_PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16 PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298. (Rev. 2-89)
Prescribed by ANSI Std. 239-128

AVF Control Number: AVF-VSR-441.0891
1 August 1991
90-10-24-ALS

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 901221W1.11104
Alsys

AlsyCOMP 043, Version 5.3
Macintosh IIcx => Macintosh IIcx

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

I,"

t ft

~~?K ~ _

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 12 December 1990.

Compiler Name and Version: AlsyCOMP_043, Version 5.3

Host Computer System: Macintosh IIcx, Macintosh System Software 6.0.5

Target Compu'er System: Macintosh IIcx, Macintosh System Software 6.0.5

Customer Agreement Number: 90-10-24-ALS

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
901221W1.11104 is awarded to Alsys. This certificate expires on 1 March
1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

(A a i okib Organization
Director, C puter & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
/1 Dr. John Solomond, Director

Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

CUSTOMER: Alsys, Inc.

ADA VALIDATION FACILITY: Ada Validation Facility (ASD/SCEL)
Computer Operations Division
Information Systems and Technology Center
Wright-Patterson AFB OH 45433-6503

ACVC VERSION: 1.11

ADA IMPLEMENTATION:

COMPILER NAME AND VERSION: AlsyCOMP043
Version 53

HOST COMPUTER SYSTEM: Apple Macintosh IIcx
Macintosh System Software 6.0.5

TARGET COMPUTER SYSTEM: Apple Macintosh Ilcx
Macintosh System Software 6.0.5

CUSTOMER'S DECLARATION:

I, the undersigned, representing Alsys, Inc., declare that Alsys, Inc. has no knowledge of
deliberate deviations from the Ada Language Standard ANSI/MIL-STD-1815A in the
implementation listed in this declaration.

Mike Blanchette, Date
Vice President, Engineering
Alsys, Inc.
67 South Bedford Street
Burlington, MA 01803-5152

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2 1
2.3 TEST MODIFICATIONS2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT3-1
3.2 SUMMARY OF TEST RESULTS3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada831 Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
O-ice, August 1990.

1UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled "And the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may le
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Vifhdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 11 November 1990.

E28005C B28006C C34006D C35702A B41308B C43004A
C45114A C45346A C45612B C45651A C46022A B49008A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B B85001L C83026A C83041A C97116A C98003B
BA2011A CB7001A CB7001B CB7004A CC1223A BC1226A
CC1226B BC3009B BD1B02B BD1BO6A AD1B08A BD2AO2A
CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2B15C BD3006A BD4008A CD4022A CD4022D CD4024B
CD4024C CD4024D CD4031A CD4051D CD5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD8002A BD8004C CD9005A CD9005B CDA2O1E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type LONGINTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55B07A B55B09C B86001W C86006C
CD710F

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONGFLOAT, or SHORTFLOAT.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAXMANTISSA is less than 47.

C45536A, C46013B, C46031B, C46033B, and C46034B contain 'SMALL
representation clauses which are not powers of two or ten.

CD2A53A checks operations of a fixed-point type for which a length
clause specifies a power-of-ten TYPE'SMALL; this implementation does not
support decimal 'SMALLs. (See section 2.3.)

C45624A checks that the proper exception is raised if MACHINEOVERFLOWS
is FALSE for floating point types with digits 5. For this
implementation, MACHINEOVERFLOWS is TRUE.

C45624B checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 6. For this
implementation, MACHINEOVERFLOWS is TRUE.

D55A03G..H (2 tests) use 63 levels of loop nesting which exceeds the
capacity of the compiler.

C86001F recompiles package SYSTEM, making package TEXTIO, and hence
package REPORT, obsoleLe.

B86001Y checks for a predefined fixed-point type other than DURATION.

2-2

IMPLEMENTATION DEPENDENCIES

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions.

EE2401D, EE2401G, and CE2401H use instantiations of DIRECT 10 with
unconstrained array and record types; this implementation raises
USEERROR on the attempt to create a file of such types.

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access method.

Test File Operation Mode File Access Method

CE2102E CREATE OUT FILE SEQUENTIAL 10
CE2102F CREATE INOUT FILE DIRECT _O
CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIAL 10
CE2102P OPEN OUT FILE SEQUENTIAL-IO
CE2102Q RESET OUT FILE SEQUENTIAL_1O
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT_10
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN FILE DIRECT_10
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUTFILE DIRECT 10
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE TEXT 10
CE3102I CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUTFILE TEXT-IO

The tests listed in the following table are not applicable because the
given file operations are not supported for the given combination of
mode and file access method.

Test File Operation Mode File Access Method

CE21O5A CREATE IN FILE SEQUENTIAL 10
CE2105B CREATE INFILE DIRECT 10
CE3109A CREATE IN-FILE TEXT I0

2-3

IMPLEMENTATION DEPENDENCIES

The following 7 tests check operations on sequential, direct, and text
files when multiple internal files are associated with the same external
file and more than one is open for writing; USEERROR is raised when
this association is attempted.

CE2107B CE2107D..E CE2107G CE2107L CE3111D..E

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIAL10. This implementation does
not restrict file capacity.

CE2401H raises USE ERROR when CREATE with mode INOUTFILE is used for
unconstrained records with default discriminants.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECTIO. This implementation does not
restrict file capacity.

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or
SET PAGE LENGTH specifies a value that is inappropriate for the external
file. THis implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. For this implementation, the value of
COUNT'LAST is greater than 150000 making the checking of this objective
impractical.

2.3 TEST MODIFICATIUNS

Modifications (see section 1.3) were required for 18 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B23004A B24007A B24009A B28003A B32202A B37004A
B61012A B95069A B95069B B97103E BAI101B BC2001D
BC3009A BC3009C

B85002A was graded passed by Evaluation Modification as directed by the
AVO. This test declares a record type REC2 whose sole component is of an
ur.zonstrained record type with a size in excess of 2**32 bytes; this
implementation rejects the declaration of REC2. Although a strict
interpretation of the LRM requires that this type declaration be accepted
(an exception may be raised on the elaboration of the type or an object
declaration), the AVO accepted this behavior in consideration that such
early error detection is expected to be allowed by the revised language

2-4

IMPLEMENTATION DEPENDENCIES

standard.

BA2001E was graded passed by Evaluation Modification as directed by the
AVO. The test expects that duplicate names of subunits with a common
ancestor will be detected as compilation errors; this implementation
detects the errors at link time, and the AVO ruled that this behavior is
acceptable.

CD2A53A was graded inapplicable by Evaluation Modification as directed by
the AVO. The test contains a specification of a power-of-10 value as
'SMALL for a fixed-point type. The AVO ruled that, under ACVC 1.11,
support of decimal 'SMALLs may be omitted.

EA3004D was graded passed by Evaluation and Processing Modification as
directed by the AVO. The test requires that either pragma INLINE is obeyed
for a function call in each of three contexts and that thus three library
units are made obsolete by the re-compilation of the inlined function's
body, or else the pragma is ignored completely. This implementation obeys
the pragma except when the call is within the package specification. When
the test's files are processed in the given order, only two units are made
obsolete; thus, the expected error at line 27 of file EA3004D6M is not
valid and is not flagged. To confirm that indeed the pragma is not obeyed
in this one case, the test was also processed with the files re-ordered so
that the re-compilation follows only the package declaration (and thus the
other library units will not be made obsolete, as they are compiled later);
a "NOT APPLICABLE" result was produced, as expected. The revised order of
files was 0-1-4-5-2-3-6.

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Mike Blanchette
67 South Bedford Street
Burlington MA 01803-5152

For a point of contact for sales information about this Ada implementation
system, see:

Jerry Rudisin
67 South Bedford Street
Burlington MA 01803-5152

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was

obtained that conforms to the Ada Programming Language Standard.

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3793
b) Total Number of Withdrawn Tests 83
c) Processed Inapplicable Tests 93
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 294 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 294 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto a VAX 3100 and transferred to the host by
FTP.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option New value Default

CALLS INLINED NORMAL

This option directs the compiler to obey the advice of INLINE pragmas.

3-2

PROCESSING INFORMATION

ERRORS 999 50

This option directs the compiler to quit only after 999 source errors.

MEMORY 2000 300

This option directs the compiler to use more memory for internal
buffering, reducing compilation time.

SHOW NONE ALL

This option directs the compiler to not produce banner information in the
listing file. This is done to facilitate listing comparisons with
other concurrent validations.

WARNING NO YES

This option directs the compiler to not emit warning messages.

FLOAT SOFTWARE AUTOMATIC

This option directs the binder to utilize software floating point support.

HISTORY NO YES

This option directs the binder to not create tables allowing a stack
traceback to be printed if a program terminates from an unhandled
exception.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for SMAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

SMAXINLEN 255

$BIGIDI (l..V-l => 'A', V => '1')

$BIGID2 (l..V-1 => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' &
(1..V-I-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' &
(1..V-l-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRING1 '"' & (1..V/2 => 'A') & 'll

$BIGSTRING2 '"' & (i..V-1-V/2 => 'A') & '1' & '"'

$BLANKS (1..V-20 => '

SMAXLENINTBASEDLITERAL
"2:" & (l..V-5 => '0') & "11:"

$MAXLEN REAL BASED LITERAL
"16:" & (1..V-7 => '0') & "F.E:"

A-i

MACRO PARAMETERS

SMAXSTRINGLITERAL '"' & (1..V-2 => 'A') & '"'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMENT 2

$COUNT LAST 2147483647

$DEFAULTMEMSIZE 2**32

$DEFAULT STORUNIT 8

$DEFAULT SYS NAME MC68OXO

$DELTADOC 2#1.0#E-31

SENTRYADDRESS SYSTEM.NULLADDRESS

$ENTRYADDRESS1 SYSTEM.NULLADDRESS+4

SENTRYADDRESS2 SYSTEM.NULLADDRESS+8

$FIELDLAST 255

$FILE TERMINATOR

$FIXEDNAME NOSUCH FIXEDTYPE

$FLOATNAME NO SUCH FLOATTYPE

$FORMSTRING

$FORMSTRING2 "CANNOT RESTRICT FILE CAPACITY"

$GREATER THANDURATION

100000.0

$GREATERTHANDURATION BASE LAST
o0oo0600o.0

$GREATER THANFLOAT BASE LAST
1. 80141E+38

$GREATER THAN FLOAT SAFE LARGE
1.6E308

A-2

MACRO PARAMETERS

SCREATER THAN SHORT FLOAT SAFE LARGE
-1.0f308-

SHIGHPRIORITY 16

$ILLEGALEXTERAL-FILE NAME1
ILLEGALEXTERNAL FILE NAMEl 9012

$ILLEGAL EXTERNAL FILE NAME2
ILLEGALEXTERNALFILENAME2_9012

$INAPPROPRIATELINELENGTH
-1

$INAPPROPRIATEPAGELENGTH

-1

$INCLUDE PRAGMA1 PRAGMA INCLUDE ("A28006D1.TST-)

SINCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006D1.TST")

$INTEGERFIRST -2147483648

$INTEGERLAST 2147483647

SINTEGER LAST PLUS 1 2147483648

SINTERFACELANGUAGE PASCAL

$LESSTHANDURATION -100000.0

$LESS THAN DURTION-BASE FIRST
-100000000.0

$LINETERMINATOR ASCII.CR

SLOW PRIORITY 1

SMACHINECODESTATEMENT

NULL;

$MACHINE CODE TYPE NO SUCH TYPE

$MANTISSADOC 31

$MAXDIGITS 15

SMAXINT 2147483647

$MAX INT PLUS 1 2147483648

$MIN INT -2147483648

A- 3

MACRO PARAMETERS

$NAME SHORT SHORT INTEGER

$NAMELIST MC68OXO

$NAMESPECIFICATIONi PUB_300:ACVC:RUNNING:X2120A

$NAMESPECIFICATION2 FUR_300:ACVC :RUNNING: X2120B

$NAME SPECIFICATION3 FUB 300:ACVC:RUNNING: X3119A

$NEGBASEDINT 16#FOOOOOOE#

$NEUHEMSIZE 2**24

$NEWSTORUNIT 8

$NEW SYS NAME MC68OXO

SPAGETERMINATOR ASCII.FF

$RECORDDEFINITION RECORD NULL; END RECORD;

$RECORDNAME NO SUCH MACHINE CODE TYPE

$TASKSIZE 32

$TASKSTORAGESIZE 1024

STICK 1.0/60.0

$VARIABLEADDRESS FCNDECL.OBJECTADDRESS

SVARIABLE ADDRESS1 FCNDECL.OBJECT ADDRESS1

$VARIABLEADDRESS2 FCNDECL.OBJECT ADDRESS2

$YOURPRAGMA EXPORT

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

The complete set of compiler options with their default values is:

COMPILE (SOURCE =>
LIBRARY =>
OPTIONS => (ANNOTATE => no value,

ERRORS => 507
LEVEL => UPDATE,
CHECKS => ALL,
GENERICS => INLINE,
FLOAT => SOFTWARE,
MEMORY => 300),

DISPLAY => (OUTPUT => SCREEN,
WARNING => YES,
TEXT => NO,
SHOW => ALL,
DETAIL => YES,
ASSEMBLY => NONE),

IMPROVE => (CALLS => NORMAL,
REDUCTION => NONE,
EXPRESSIONS => NONE,
OBJECT => PEEPHOLE),

ALLOCATION => (STACK => 2048,
GLOBAL => 1024),

KEEP => (TREE => NO,
DEBUG => NO,
COPY => NO));

B-i

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

The complete set of binder options with their default values is:

BIND (PROGRAM =>
LIBRARY =>
OPTIONS => (LEVEL => LINK,

COMPONENT => MPW TOOL,
OBJECT => AUTOMATIC,
UNCALLED => REMOVE,
SLICE => NO,
FLOAT => AUTOMATIC),

STACK => (MAIN => 16,
TASK => 8,
HISTORY => YES),

HEAP => (SIZE => 32,
INCREMENT => 32),

INTERFACE => (DIRECTIVES => novalue,
MODULES => novalue,
SEARCH => no value),

DISPLAY => (OUTPUT => SCREEN,
DATA => NONE,
WARNING => YES),

KEEP => (DEBUG => NO));

B-2

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is
,........

type SHORT SHORT INTEGER is range -128 .. 127;
type SHORT INTEGER is range -32 768 .. 32 767;
type INTEGER is range -2 147 483-648 .. 2 147 483 647;

type FLOAT is digits 6 range -2#1.111 1111 1111 1111 1111 1111#E+127
2#1.11F-111111111111111111#E+127;

type LONG FLOAT is digits 15 range
-(2.0 - 2.0**(-52)) * 2.0**1023 .. +(2.0 - 2.0**(-52)) * 2.0**1023;

type DURATION is delta 2#0.000 000 000 000 01#
range -86_400.0 .. 86_400.0; - - -

end STANDARD;

C-I

Alsys Ada Development Environment

APPENDIX F

for the Apple Macintosh Computer

Version 5

Copyright 1990 by Alsys

All rights reserved. No part of this document may be reproduced in any form or by any
means without permission in writing from Alsys.

Printed: October 1990

Alsys reserves the right to make changes in specifications and other information
contained in this publication without prior notice. Consult Alsys to determine whether
any such changes have been made.

Alsys, AdaWorld, AdaProbe, AdaTune, AdaXref, AdaReformat, and AdaMake are registered trademarks of,,usys.
Apple, A/UX, Macintosh, and SANE are registered trademarks of Apple Computer, Inc.
APDA, MPW, MultiFinder are trademarks of Apple Computer, Inc.

TABLE OF CONTENTS

1 IMPLEMENTATION-DEPENDENT PRAGMAS

1.1 The Pragma INTERFACE 1

1.2 The Pragma INTERFACENAME 1

1.3 The Pragma INLINE 2
1.4 The Pragma EXPORT 2

1.5 The Pragma EXTERNAL-NAME 3

1.6 The Pragma INDENT 3

1.7 The Pragma IMPROVE 4

1.8 The other Pragmas 4

1.9 Pragmas with no Effect 4

2 IMPLEMENTATION-DEPENDEYN . - fR.frLUTES 5

2.1 Attributes used in Record ,,jpfesentation Clauses 5
2.2 Limitations on the use of the Attribute ADDRESS 5
2.3 The Attribute IMPO 'T 6

3 THE PACKAGES SYSTEM AND STANDARD 9

4 TYPE REPRESENTATION CLAUSES 13

4.1 Enumeration Types 14
4.2 Integer Types 17
4.3 Floating Point Types 20

4.4 Fixed Point Types 22
4.5 Access Types 26
4.6 Task Types 27
4.7 Array Types 28
4.8 Record Types 33

Table of Contents

5 IMPLEMENTATION-DEPENDENT COMPONENTS 45

6 ADDRESS CLAUSES 47

6.1 Address Clauses for Objects 47
6.2 Address Clauses for Program Units 47
6.3 Address Clauses for Entries 47

7 UNCHECKED CONVERSIONS 49

8 INPUT-OUTPUT CHARACTERISTICS 51

8.1 Introduction 51
8.2 The Parameter FORM 52

INDEX 59

ii .Ippendix F, Version 5

CHAPTER 1

IMPLEMENTATION-DEPENDENT PRAGMAS

1.1 The Pragma INTERFACE
Programs written in Ada can interface with external subprograms written in another

language, by use of the pragma INTERFACE. The format of the pragma is:

pragma INTERFACE (language-name, Ada subprogram name);

The languagename may be Pascal, C, or Assembler.

The Ada subprogram name is the name by which the subprogram is known in Ada.

Interfacing the Ada language with other Janguages is detailed in the Application
Developer's Guide.

1.2 The Pragma INTERFACE-NAME

To name the external subprogram to which an Ada subprogram is interfaced, as defined
in the other language, may require the use of non-Ada naming conventions, such as
special characters, or case sensitivity. For this purpose the implementation-dependent
pragma INTERFACE-NAME may be used in conjunction with the pragma INTERFACE.

pragma INTERFACE-NAME (Ada subprogramname, name string);

The name string is a string, which denotes the name of the external subprogram as
defined in the other language. TheAda subprogramname is the name by which the
subprogram is known in Ada.

The pragma INTERFACE NAME may be used anywhere in an Ada program where
INTERFACE is allowed (see [13.91). It must occur after the corresponding pragma
INTERFACE and within the same declarative part or package specification.

Implementation-Dependent Pragmas I

1.3 The Pragma INLINE

Pragma INLINE is fully supported; however, it is not possible to inline a subprogram in a
declarative part.

Note that inlining facilities are also provided by use of the command COMPILE with the
option IMPROVE (see the User's Guide).

1.4 The Pragma EXPORT

The pragma EXPORT takes a language name and an Ada identifier as arguments. This
pragma allows an object defined in Ada to be visible to external programs written in the
specified language.

pragma EXPORT (languagename, Ada-identifier)

Example:

package MYPACKAGE is

THIS OBJECT: INTEGER;
pragma EXPORT (PASCAL, THISOBJECI);

end MY-PACKAGE;

Limitations on the use of pragma EXPORT

" This pragma must occur in a declarative part and applies only to objects declared in
this same declarative part, that is, generic instantiated objects or renamed objects
are excluded.

" The pragma is only to be used for objects with direct allocation mode, which are
declared in a library package. The ALSYS implementation gives indirect allocation
mode to dyndmic objects, and objects that have a significant size (see Section 2.1 of
the Application Developer's Guide).

2 Appendix F, Version 5

1.5 The Pragma EXTERNAL-NAME

To name an exported Ada object as it is identified in the other language may require the
use of non-Ada naming conventions, such as special characters, or case sensitivity. For
this purpose the implementation-dependent pragma EXTERNALNAME may be used in
conjunction with the pragma EXPORT:

pragma EXTERNAL-NAME (Ada-identifier, name siring);

The name-string is a string which denotes the name of the identifier defined in the other
language. The Ada dentifier denotes the exported Ada object.

The pragma EXTERNALNAME may be used anywhere in an Ada program where
pragma EXPORT is allowed. It must occur after the corresponding pragma EXPORT and
within the same library package.

Example:

package MY-PACKAGE is

THIS OBJECT: INTEGER;
pragma EXPORT (PASCAL, THISOBJECT);
pragma EXTERNALNAME (THIS-OBJECT, "ThisObject*);

end MY-PACKAGE;

'1.6 The Pragma INDENT
This pragma is only used by AdaReformat. This tool offers the functionalities of a

pretty-printer in an Ada environment.

The pragma is placed in the source file and interpreted by AdaReformat.

pragma INDENT(OFF) causes AdaReformat not to modify the source lines after this
pragma.

pragma INDENT(ON) causes AdaReformat to resume its action after this pragma.

Implementation-Dependent Pragmas 3

1.7 The Pragma IMPROVE

This pragma is used to suppress implicit components from a record type.

pragma IMPROVE (TIME I SPACE, [ON = >] simplename);

See Section 4.8 for the complete description.

1.8 The other Pragmas

Pragma PACK is discussed in detail in the section on representation clauses and records
(Chapter 4).

Pragma PRIORITY is accepted with the range of priorities running from 1 to 16 (see the
definition of the predefined package SYSTEM in Section 3). Undefined priority (no
pragma PRIORITY) is treated as though it were less than every defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress all checks in a given
compilation by the use of the Compiler option CHECKS. (See Chapter 4 of the User's
Guide.)

1.9 Pragmas with no Effect

The following pragmas have no effect:

CONTROLLED
MEMORY-SIZE
STORAGE-UNIT
SYSTEM-NAME
OPTIMIZE

For optimization, certain facilities are provided through use of the command COMPILE
with the option IMPROVE (see the User's Guide).

4 Appendix F, Version 5

CHAPTER 2

IMPLEMENTATION-DEPENDENT ATTRIBUTES

2.1 Attributes used in Record Representation Clauses

In addition to the Representation Attributes of [13.7.2] and [13.7.3], the following five
attributes are used to form names of indirect and implicit components for use in record
representation clauses, as described in Section 4.8.

'OFFSET
'RECORD.SIZE
'VARIANT-INDEX
'ARRAYDESCRIPTOR
'RECORDDESCRIPTOR

2.2 Limitations on the use of the Attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful addresses.

Note that the value returned by the attribute ADDRESS is undefined before the
elaboration of the subprogram body (when 'ADDRESS is applied to a subprogram).

The following entities do not have meaningful addresses and will therefore cause a
compilation error if used as prefix to ADDRESS:

" A constant that is implemented as an immediate value, i.e., does not have any space
allocated for it

" A package specification that is not a library unit

" A package body that is not a library unit or subunit

" A function that renames an enumeration literal.

Implementation -Dependent Attributes 5

2.3 The Attribute IMPORT

This attribute is a function which takes two literal strings as arguments; the first one
denotes a language name and the second one denotes an external symbol name. It yields
the address of this external symbol. The prefix of this attribute must be
SYSTEM.ADDRESS. The value of this attribute is of the type SYSTEM.ADDRESS. The
syntax is:

SYSTEM.ADDRESS'IMPORT ('Language name", "exernalsymbol-name')

Following are two examples which illustrate the use of this attribute. Note that in these
examples the sizes of the predefined integer types SHORTINTEGER and INTEGER are
respectively 16 and 32 bits as defined in package STANDARD (See Chapter 3).

Ewmpk 1:

SYSTEM.ADDRESS'IMPORT is used in an address clause in order to access a global
object defined in a C library-

For the language C:

extern int errno;

For the language Ada:

package MYPACK is

ERROR NO: INTEGER;
for ERROR-NO use at SYSTEM.ADDRESS'IMPORT ('C', errno');

end MY PACK;

Note that implicit initializations are performed on the declaration of objects; objects of
type access are implicitly initialized to null.

6 Appendix F, Version 5

Exampk 2:

The second example shows another use of 'IMPORT which avoids implicit initializations.

SYSTEM.ADDRESS'IMPORT is used in a renaming declaration to give a new name to an
external object:

For the language C:

struct record c {
short il;
short i2;

}rec;

For the language Ada:

type RECORDC Is
record

11: SHORT INTEGER;
12: SHORTINTEGER;

end record;

type ACCESS-RECORD Is access RECORDC
function CONVERT TO ACCESSRECORD is new

UNCHECKED CONVERSION (SYSTEM.ADDRESS, ACCESS-RECORD);
X RECORD C renames CONVERT TO ACCESSRECORD

(SYSTEM.ADDRESS'IMPORT("C-, "rec")).all;

In this example, no implicit initialization is done on the renamed object X.

Note that the object is actually defined in the external world and is only refererced in the
Ada world.

Implementation-Dependent Attributes 7

8 Appendix F, Version S

CHAPTER 3

THE PACKAGES SYSTEM AND STANDARD

This section contains information on two predefined library packages:

" a complete listing of the visible part of the specification of the package SYSTEM

" a list of the implementation-dependent declarations in the package STANDARD.

The package SYSTEM

package SYSTEF

type AD0L;S is private;

.ype NAME is (MC680XO);

SYSTEM NAME : constant NAME :z MC680XO;

STORAGE UNIT : constant :* 8;

MEMORY-SIZE : constant :z 2**32;

MININT : constant :z - (2"'31);

MAXINT : constant :z 2'31 - 1;
MAXDIGITS : constant := 15;

KAXMANTISSA : constant := 31;
FINE-DELTA : constant := 2#1.0#E-31;

TICK : constant :x 1.0/60.0;

subtype PRIORITY is INTEGER range 1 .. 16;

NULL ADDRESS : constant ADDRESS;

function VALUE (LEFT : in STRING) return ADDRESS;

The Packages System and Standard 9

ADDRESS WIDTH : constant :: 8;

subtype ADDRESSSTRING is STRING(I..ADDRESSWIDTH);

function IMAGE (LEFT : in ADDRESS) return ADDRESSSTRING;

type OFFSET is range -2**31 .. 2'31-1;

-- This type designates a number of storage units (bytes).

function -+" (LEFT : in ADDRESS; RIGHT : in OFFSET) return ADDRESS;

function " (LEFT : in OFFSET; RIGHT : in ADDRESS) return ADDRESS;

function "-" (LEFT : in ADDRESS; RIGHT : in OFFSET) return ADDRESS;

function "-" (LEFT : in ADDRESS; RIGHT : in ADDRESS) return OFFSET;

function "=" (LEFT, RIGHT in ADDRESS) return BOOLEAN;

function "<" (LEFT, RIGHT in ADDRESS) return BOOLEAN;

function 11-11 (LEFT, RIGHT in ADDRESS) return BOOLEAN;

function ">1 (LEFT, RIGHT in ADDRESS) return BOOLEAN;

function "mod" (LEFT : in ADDRESS; RIGHT : in POSITIVE) return NATURAL;

type ROUND DIRECTION is (DOWN, UP);

function ROUND (VALUE : in ADDRESS;

DIRECTION : in ROUNDDIRECTION;

MODULUS : in POSITIVE) return ADDRESS;

generic

type TARGET is private;

function FETCH FRON ADDRESS (A : in ADDRESS) return TARGET;

generic

type TARGET is private;
procedure ASSIGN TO ADDRESS (A : in ADDRESS; T : in TARGET);

type OBJECT LENGTH is range 0 .. 2"'31 -1;

This type designates the size of an object in storage units.

10 Appendix F, Version 5

procedure MOVE (TO : in ADDRESS;

FROM : in ADDRESS;

LENGTH : in OBJECT LENGTH);

private

-- Private part of the SYSTEM package.

end SYSTEM;

The package STANDARD

The following are the implementation-dependent declarations in the package
STANDARD:

type SHORTSHORTINTEGER is range -2**7 2**7 -1;
type SHORT-INTEGER is range -2*15 .. 2*15 -1;

type INTEGER is range -2**31 .. 2*31 -1;

type FLOAT is digits 6 range

-(2.0 - 2.0*(-23)) * 2.0**127

+(2.0 - 2.0*(-23)) * 2.0"'127;

type LONGFLOAT is digits 15 range

-(2.0 - 2.0*(-52)) * 2.0*1023

+(2.0 - 2.0"*(-52)) * 2.0"'1023;

type DURATION is delta 2.0*(-14) range -86400.0 .. 86400.0;

The Packages System and Standard 11

12 Appendix F, Version 5

CHAPTER 4

TYPE REPRESENTATION CLAUSES

The aim of this se.'Aon is to explain how objects are represented and allocated by the
Alsys Ada compiler k.r MC68OXo machines and how it is possible to control this using
representation clauses.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point.
fixed point, access, task, array and record types. For each class of type the representation
of the corresponding objects is described.

Except in the case of array and record types, the description for each class of type is
independent of the others. To understand the representation of an array type it is
necessary to understand first the representation of its components. The same rule applies
to record types.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

" a (predefined) pragma PACK, when the object is an array, an array component, a
record or a record component

" a record representation clause, when the object is a record or a record component

" a size specification, in any case.

For each class of types the effect of a size specification alone is described. Interference
between size specifications, packing and record representation clauses is described under
array and record types.

Type Representation Clauses 13

4.1 Enumeration Types

Internal coda of enumeration lierals

When no enumeration representation clause applies to an enumeration type, the
internal code associated with an enumeration literal is the position number of the
enumeration literal. Then, for an enumeration type with n elements, the internal codes
are the integers 0, 1, 2, .. , n-1.

An enumeration representation clause can be provided to specify the value of each
internal code as described in [13.3]. The Alsys compiler fully implements enumeration
representation clauses.

As internal codes must be machine integers the internal codes provided by an
enumeration representation clause must be in the range -231 .. 231_1.

Encoding of enumeration values

An enumeration value is always represented by its internal code in the program
generated by the compiler.

When an enumeration type is not a boolean type or is a boolean type with an
enumeration representation clause, binary code is used to represent internal codes.
Negative codes are then represented using two's complement.

When a boolean type has no enumeration representation clause, the internal code 0 is
represented by a succession of Os and the internal code 1 is represented by a succession of
Is. The length of this pattern of Os or of Is is the size of the boolean value.

Minimum size of an enumeration subtype

The minimum size of an enumeration subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M are
the values of the internal codes associated with the first and last enumeration values of

14 Appendix P, I-ersion 5

the subtype, then its minimum size L is determined as follows. For m > = 0, L is the
smallest positive inte er such that M < = 2 L-I. For m < 0, L is the smallest positive
integer such that-2 < = m and M < = 2 L-l.

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACKANDWHITE is COLOR range BLACK.. WHITE,
-- The minimum size of BLACKANDWHITE is 2 bits.

subtype BLACK OR WHITE is BLACK AND WHITE range X .. X;
-- Assuming that X is not static, the minimum size of BLACK OR WHITE is
-- 2 bits (the same as the minimum size of its type mark BLACKAND WHITE).

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named subtype, the
objects of that type or first named subtype are represented as signed machine integers.
The machine provides 8, 16 and 32 bit integers, and the compiler selects automatically
the smallest signed machine integer which can hold each of the internal codes of the
enumeration type. The size of the enumeration type and of any of its subtypes is thus 8,
16 or 32 bits.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

Type Representation Clauses 15

type EXTENDED is
(-- The usual American ASCII characters.

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,

BS, I-IT, LF, VT, FF, CR, SO, SI,

DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,

CAN, EM, SUB, ESC, FS, GS, RS, US,
,, i., ,3#,, '$', , ,&,, ,

'0', T 7, '2, '3', 'A', 5, W, 97,
89 "', ,, < 9 9 . , > , -?,

'A', 'B', 'C', 'D', 'E', 'F', 1G ,
'H, , J, WK, VL, IM', IN', 'O',

, Q 'R', IS" 'T, IU, IV,, W.,

x, , T, T, .,a , I b', c' 'I' 'e' I 'f', 'g'
Wh, 'i', 'j', Yk, T, m, In", 'o',
I p 9 qI rl, IS" It', u, IV,, wI,

yI, Il' ' I DEL,

-- Extended characters
LEFT ARROW,
RIGHT ARROW,
UPPER ARROW,
LOWER ARROW,
UPPER LEFT CORNER,
UPPER RIGHT CORNER,
LOWER RIGHT CORNER,
LOWER LEFT CORNER);

for EXTENDED'SIZE use 8;
The size of type EXTENDED will be one byte. Its objects will be represented

- as unsigned 8 bit integers.

The Alsys compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

16 Appendix F, Version 5

Size of the objecs ojan enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an enumeration subtype has the same size as its subtype.

Alignment of an enumeration subtype

An enumeration subtype is byte aligned if the size of the subtype is !:ss than or equal to 8
bits, it is otherwise even byte aligned.

Address of an object of an enumeration subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an enumeration subtype is even when its subtype is
even byte aligned.

4.2 Integer Types

Predefined integer types

There are three predefined integer .ypes in the Alsys implementation for MC68OX0
machines:

type SHORTSHORT INTEGER is range -2**7.. 2**7 -1;
type SHORT P'TEGER Is range -2"*15.. 2*15 -1;
type INTEGER is range -2*31 .. 2"'31 -1;

Selection of the parent of an integer type

An integer type declared by a declaration of the form:

type T is range L.. R;

Type Representation Clauses 17

is implicitly derived from a predefined integer type. The compiler automatically selects
the predefined integer type whose range is the shortest that contains the valLes L to R
inclusive.

Encoding of integer values

Binary code is used to represent integer values. Negative numbers are represented using
two's complement.

Minimum siz of an integer subtype

The minimum size of an integer subtype is the minimum number of bits that is necessary
for representing the internal codes of the subtype values in normal binary form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M are
the lower and upper bounds of the subtype, then its minimum size L is determined as
follows. For m > = 0, L is the smallest positive integer such that M < = 2 L_1. For m <
0, L is the smallest positive integer that _2 L- I < = m and M < = 2 L- 1_1.

subtype S is INTEGER range 0.. 7;
-- The minimum size of S is 3 bits.

subtype D is S range X.. Y;
-- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of its type mark S).

Size of an integer subtype

The sizes of the predefined integer types SHORT SHORTINTEGER, SHORT INTEGER
and INTEGER are respectively 8, 16 and 32 bits.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly. For example:

18 Appendix F, Version 5

type S is range 80.. 100;
S is derived from the predefined 8 bit integer, its size is 8 bits.

type J is range 0 .. 255;
-- J is derived from the predefined 16 bit integer, its size is 16 bits.

type N is new J range 80.. 100;
- N is indirectly derived from the predefined 16 bit integer, its size
-- is 16 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S is range 80.. 100;
for S'SIZE use 32;

S is derived from an 8 bit integer, but its size is 32 bits
- because of the size specification.

type J is range 0 .. 255;
for J'SIZE use 8;
-- J is derived from a 16 bit integer, but its size is 8 bits because
- of the size specification.

type N is new J range 80.. 100;
-- N is indirectly derived from a 16 bit integer, but its size is 8 bits
-- because N inherits the size specification of .

The Alsys compiler fully implements size specifications. Nevertheless, as integers are
implemented using machine integers, the specified length cannot be greater than 32 bits.

Size of the objects of an integer subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

Type Representation Clauses 19

Alignment of an Weger subtype

An integer subtype is byte aligned if the size of the subtype is less than or equal to 8 bits,
it is otherwise even byte aligned.

Address of an object of an integer subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK. the address of an object of an integer subtype is even when its subtype is even
byte aligned.

4.3 Floating Point Types

Predefutedfloating point types

There are two predefined floating point types in the Alsys implementation for MC68OX0
machines:

type FLOAT Is
digits 6 range -(2.0 - 2.0"*(-23))'2.0"*127.. (2.0- 2.0"*(-23))*2.0**127;

type LONG-FLOAT is
digits 15 range -(2.0 - 2.0*(-51))*2.0"*1023.. (2.0 - 2.0"*(-51))*2.0**1023;

Selection of the parent of a floating point type

A floating point type declared by a declaration of the form:

type T is digits D [range L.. R];

is implicitly derived from a predefined floating point type. The compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L to R inclusive.

20 Appendix F, Version 5

Encoding of floating point values

In the program generated by the compiler, floating point values are represented using
the IEEE standard formats for single and double floats.

The values of the predefined type FLOAT are represented using the single float format.
The values of the predefined type LONG-FLOAT are represented using the double float
format. The values of any other floating point type are represented in the same way as
the values of the predefined type from which it derives, directly or indirectly.

Minimum size ofa floating point subtype

The minimum size of a floating point subtype is 32 bits if its base type is FLOAT or a type
derived from FLOAT; it is 64 bits if its base type is LONG-FLOAT or a type derived from
LONG-FLOAT.

Size of a floating point subtype

The sizes of the predefined floating point types FLOAT and LONG-FLOAT are
respectively 32 and 64 bits.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype using a
size specification is its usual size (32 or 64 bits).

Size of the objects of a floating point subtype

An object of a floating point subtype has the same size as its subtype.

Alignment of a floating point subtype

A floating point subtype is always even byte aligned.

Type Representation Clauses 21

Address of an object of a floating point subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of a floating point subtype is always even, since its
subtype is even byte aligned.

4.4 Fixed Point Types

Smail of a fixed point type

If no specification of small applies to a fixed point type, then the value of small is
determined by the value of delta as defined by [3.5.9].

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

Predefumed flrd point types

To implement fixed point types, the Alsys compiler for MC68OX0 machines uses a set of
anonymous predefined types of the form:

type FIXED 8 is delta D range (-2"*07-1)*S.. 2"*07"S;
for FIXED_8'SMALL use S;

type FIXED_16 Is delta D range (-2*15-1)*S.. 2"15;
for FIXED_16'SMALL use S;

type FLXED 32 is delta D range (-2"'31-1)*S.. 2*"31"S;
for FIXED 32'SMALL use S;

where D is any real value and S any power of two less than or equal to D.

22 Appendix F, Version 5

Selection of the parent of a fired point type

A fixed point type declared by a declaration of the form:

type T Is delta D range L.. R;

possibly with a specification of small:

for T'SMALL use S;

is implicitly derived from a predefined fixed point type. The compiler automatically
selects the predefined fixed point type whose small and delta are the same as thc small
and delta of T and whose range is the shortest that includes the values L to R inclusive.

Encoding of fixed point valae

In the program generated by the compiler, a safe value V of a fixed point subtype F is
represented as the integer:

V / FBASE'SMALL

Minimum size of a fred point subtype

The minimum size of a fixed point subtype is the minimum number of binary digits that
is necessary for representing the values of the range of the subtype using the small of the
base type-

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S being
the bounds of the subtype, if i and I are the integer representations of m and M, the
smallest and the greatest model numbers of the base type such that s < m and M < S,
then the minimum size L is determined as follows. For i >= 0, L is the smallest positive
titeger such that I <= 2L-1.For i < 0, L is the smallest positive integer such that -
2L-f <= iand I <= 2- 1 _1.

Type Representation Clauses 23

type F is delta 2.0 range 0.0.. 500.0;
- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0.. 250.0;
-- The minimum size of S is 7 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
- (the same as the minimum size of its type mark S).

Size of a fixed point subtype

The sizes of the predefined fixed point types FIXED_8, FIXED_16 and FIXED 32 are
respectively 8, 16 and 32 bits.

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the size of the predefined type from which it
derives directly or indirectly. For example:

type S is delta 0.01 range 0.8.. 1.0;
- S is derived from an 8 bit predefined fixed type, its size is 8 bits.

type F is delta 0.01 range 0.0.. 2.0;
-- F is derived from a 16 bit predefined fixed type, its size is 16 bits.

type N is new F range 0.8.. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, its size is 16 bits.

When a size specification is applied to a fixed point type, this fixed point type and each of
its subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S is delta 0.01 range 0.8.. 1.0;
for S'SIZE use 32;
- S is derived from an 8 bit predefined fixed type, but its size is 32 bits

because of the size specification.

24 Appendix F, Version 5

type F is delta 0.01 range 0.0.. 2.0;
for FSIZE use 8;
-- F is derived from a 16 bit predefined fixed type, but its size is 8 bits
-- because of the size specification.

type N is new F range 0.8.. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, but its size is
-- 8 bits because N inherits the size specification of F.

The Alsys compiler fully implements size specifications. Nevertheless, as fixed point
objects are represented using machine integers, the specified length cannot be greater
than 32 bits.

Size of the objects of a fed point subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.

Alignment of a fixed point subtype

A fixed point subtype is byte aligned if its size is less than or equal to 8 bits, and is
otherwise even byte aligned.

Address of an object of a fiued point subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of a fixed point subtype is even when its subtype is even
byte aligned.

Type Representation Clauses 25

4.5 Access Types

Collection Size

When no specification of collection size applies to an access type, no storage space is
reserved for its collection, and the value of the attributc STORAGE-SIZE is then 0.

As described in [13.2], a specification of collection size can be provided in order to
reserve storage space for the collection of an access type. The Alsys compiler fully
implements this kind of specification.

Encoding of access values.

Access values-are machine addresses.

Minimum size of an access subtype

The minimum size of an access subtype is 32 bits.

Size of an access subtype

The size of an access subtype is 32 bits, the same as its minimum size.

The only size that can be specified for an access type using a size specification is its usual
size (32 bits).

Size of an object of an access subtype

An object of an access subtype has the same size as its subtype, thus an object of an
access subtype is always 32 bits long.

Aignment of an access subtype

An access subtype is always even byte aligned.

26 Appendix F, Version 5

Address of an object of an access subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an access subtype is always even, since its subtype is
even byte aligned.

4.6 Task Types

Storage for a task activation

When no length clause is used to specify the storage space to be reserved for a task
activation, the storage space indicated at bind time is used for this activation.

As described in [13.2], a length clause can be used to specify the storage space for the
activation of each of the tasks of a given type. In this case the value indicated at bind time
is ignored for this task type, and the length clause is obeyed.

Encoding of task values

Encoding of a task value is not described here.

Minimum size of a task subtype

The minimum size of a task subtype is 32 bits.

Size of a task subtype

The size of a task subtype is 32 bits, the same as its minimum size.

A size specification has no effect on a task type. The only size that can be specified using
such a length clause is its minimum size.

Type Representation Clauses 27

Size of the objects of a task subtype

An object of a task subtype has the same size as its subtype. Thus an object of 1 task
subtype is always 32 bits long.

A'pnment of a task subtype

A task subtype is always even byte aligned.

Addres of an object of a task subtype

Provided its alignment is not constrained by a record representation clause, the address
of an object of a task subtype is always even, since its subtype is even byte aligned.

4.7 Array Types

Layout of an ara

Each array is allocated in a contiguous area of storage unit". All the components have
the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same size.

Component Gap Component Gap component Gap

28 Appendix F, Version 5

* Componens

If the array is not packed, the size of the components is the size of the subtype of the
components:

type A is array (1 .. 8) of BOOLEAN;
-- The size of the components of A is the size of the type BOOLEAN: 8 bits.

type DECIMAL-DIGIT Is range 0.. 9,
for DECIMALDIGITSIZE use 4;

type BINARY CODEDDECIMAL is
array (INTEGER range < >) of DECIMAL-DIGIT;

--The size of the type DECIMAL DIGIT is 4 bits. Thus in an array of
- type BINARYCODED DECIMAL each component will be represented on
--4 bits as in the usual BCD representation.

If the array is packed and its components are neither records nor arrays, the size of the
components is the minimum size of the subtype of the components:

type A is array (1 .. 8) of BOOLEAN;
pragma PACK(A);
-- The size of the components of A is the minimum size of the type BOOLEAN:
-- 1 bit.

type DECIMAL-DIGIT is range 0.. 9;
for DECIMAL DIGITSIZE use 32;
type BINARY CODED DECIMAL is

array (INTEGER range < >) of DECIMAL DIGIT;
pragma PACK(BINARY CODED DECIMAL);
-- The size of the type DECIMAL DIGIT is 32 bits, but, as
-- BINARYCODEDDECIMAL is packed, each component of an array of this
-- type will be represented on 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays.

Type Representation Clauses 29

* Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
to optimize access to the array components and to their subcomponents. The size of the
gap is chosen so that the relative displacement of consecutive components is a multiple
of the alignment of the subtype of the components. This strategy allows each component
and subcomponent to have an address consistent with the alignment of its subtype:

type R is
record

K: SHORT INTEGER; -- integer is even byte aligned.
B: BOOLEAN; - BOOLEAN is byte aligned.

end record;
-- Record type R is even byte aligned. Its size is 24 bits.

type A is array (1 .. 10) of R;
-- A gap of one byte is inserted after each component in order to respect the

alignment of type R. The size of an array of type A will be 320 bits.

Component Gap Component Gap Component Gap

Array of type A: each subcomponent K has an even offset.

If a size specification applies to the subtype of the components or if the array is packed.
no gaps are inserted:

30 Appendix F, Version 5

type R is
record

K: SHORT INTEGER;
B: BOOLEAN;

end record;

type A is array (1 .. 10) of R;
pragma PACK(A);
- There is no gap in an array of type A because
-- A is packed.
- The size of an object of type A will be 240 bits.

type NR is new R;
for NR'SIZE use 24;

type B is array (1 .. 10) of NR;
- There is no gap in an array of type B because
-- NR has a size specification.
- The size of an object of type B will be 240 bits.I l u IL I

Component Coampoent Component

Array of type A or B: a subcomponent K can have an odd offset

Size of an array subtype

The size of an array subtype is obtained by multiplying the number of its components by

the sum of the size of the components and the size of the gaps (if any). If the subtype is

unconstrained the maximum number of components is considered.

Type Representation Clauses 31

The size of an array subtype cannot be computed at compile time

" if it has non-static constraints or is an unconstrained array type with non-static
index subtypes (because the number of components can then only be determined at
run time).

" if the components are records or arrays and their constraints or the constraints of
their subcomponents (if any) are not static (because the size of the components and
the size of the gaps can then only be determined at run time).

As has been indicated above, the effect of a pragma PACK on an array type is to suppress
the gaps and to reduce the size of the components. The consequence of packing an array
type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys compiler.

A size specification applied to an array type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of an array is as expected by
the application.

Size of the objets of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of the
object.

Alignment of an array subtype

If no pragma PACK applies to an array subtype and no size specification applies to its
components, the array subtype is even byte aligned if the subtype of its components is
even byte aligned. Otherwise it is byte aligned.

32 Appendix F, Version 5

If a pragma PACK applies to an array subtype or if a size specification applies to its
components (so that there are no gaps), the alignment of the array subtype is as given in
the following table:

retative disptacement of components

even number odd number not a whoLe
of bytes of bytes number of bytes

even byte even byte byte bit
Component
subtype byte byte byte bit

at igrsent
bit bit bit bit

Addres of an object of an array subtype

Provided its alignment is not constrained by a record representation clause, the address
of an object of an array subtype is even when its subtype is even byte aligned.

4.8 Record Types

Layout of a record

Each record is allocated in a contiguous area of storage units. The size of a record
component depends on its type. Gaps may exist between some components.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in [13.41. In the Alsys implementation
for MC68OX0 machines there is no restriction on the position that can be specified for a
component of a record. If a component is of an enumeration, integer or fixed point type,
its size can be any size from the minimum size of its subtype to 32 bits. If a component is
of another class of type, its size must be the size of its subtype.

Type Representation Clauses 33

type INTERRUPTMASK Is array (0.. 2) of BOOLEAN;
pragma PACK(INTERRUPTMASK);
- The size of INTERRUPT ASK is 3 bits.

type CONDITION CODE is 0 .. 1;
- The size of CONDITIONCODE is 8 bits, its minimum size is 1 bit.

type STATUSBIT Is new BOOLEAN;
for STATUS BIT'SIZE use 1;
- The size and the minimum size of STATUS-BIT are 1 bit.

SYSTEM :constant:= 0,
USER : constant:= 1;

type STATUS-REGISTER is
record

T :STATUS BIT; -- Trace
S :STATUS BIT; -- Supervisor
I : INTERRUPT MASK; - Interrupt mask
X : CONDITION CODE; - Extend
N : CONDITIONCODE; - Negative
Z : CONDITION CODE; - Zero
V : CONDITIONCODE; -- Overflow
C : CONDITION CODE; -- Carry

end record;
- This type can be used to map the status register of a MC68000 processor:

for STATUSREGISTER use
record at mod 2;

T at SYSTEM range 0.. 0,
S at SYSTEM range 2.. 2;
I at SYSTEM range 5 .. 7;
X at USER range 3 .. 3;
N at USER range 4.. 4;
Z at USER range 5 .. 5;
V at USER range 6.. 6;
C at USER range 7 .. 7;

end record;

34 Appendix F. Version 5

WARNING: Note that bits are numbered from the high order end of a byte. See
Chapter 1 of the Application Developer's Guide for a discussion of bit numbering.

A record representation clause need not specify the position and the size for every
component.

If no component clause applies to a component of a record, its size is the size of its
subtype. Its position is chosen by the compiler so as to optimize access to the
components of the record: the offset of the component is chosen as a multiple of 8 bits if
the objects of the component subtype are usually byte aligned, but a multiple of 16 bits if
these objects are usually even byte aligned. Moreover, the compiler chooses the position
of the component so as to reduce the number of gaps and thus the size of the record
objects.

Because of these optimizations, there is no connection between the order of the
components in a record type declaration and the positions chosen by the compiler for the
components in a record object.

Ind&e componets

If the offset of a component cannot be computed at compile time, this offset is stored in
the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are said to be direct:

Type Representation Clauses 35

Beginning of the record

CopiLe time offset
DIRECT

Copite time offset
OFFSET

Run time offset

INDIRECT

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated at
run time and may even depend on the discriminants of the record. We will call these
components dynamic components:

type DEVICE is (SCREEN, PRINTER);

type COLOR is (GREEN, RED, BLUE);

type SERIES is array (POSITIVE range < >) of INTEGER;

type GRAPH (L: NATURAL) is
record

X: SERIES(1.. L); -- The size of X depends on L
Y: SERIES(I.. L); -- The size of Y depends on L

end record;

0: POSITIVE;

36 Appendix F Version 5

type PICTURE (N: NATURAL; D: DEVICE) is
record

F: GRAPH(N); -- The size of F depends on N
S: GRAPH(Q); -- The size of S depends on Q
case D is

when SCREEN = >
C: COLOR;

when PRINTER = >
null;

end case;
end record;

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order to minimize the number of
indirect components, the compiler groups the dynamic components together and places
them at the end of the record:

o x SCREEN D = PRINTER
N=2 N=1

S OBeginning of the recordS OFFSET d- S OFFSET _

Compite time offsets
F OFFSET F OFFSET --

N N

D D

Run time offsets F

F -I

- S -

The record type PICTURE: F and S are placed at the end of the record

Type Representation Clauses 3 7

Thanks to this strategy, the only indirect components are dynamic components. But not
all dynamic components are necessarily indirect: if there are dynamic components in a
component list which is not followed by a variant part, then exactly one dynamic
component of this list is a direct component because its offset can be computed at
compilation time (the only dynamic components that are direct components are in this
situation):

Beginning of the record
Y OFFSET

Compite time offset
L

CompiLe time offset

X Size dependent on discriminant L

Run time offset

Y Size dependent on discriminant L

The record type GRAPH: the dynamic component X is a direct component.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to store
the size of any value of the record type (the maximum potential offset). The compiler
evaluates an upper bound MS of this size and treats an offset as a component having an
aronymous integer type whose range is 0. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name C'OFFSET.

38 Appendix F, Version 5

Implicit components

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant values. To avoid useless
recomputation the compiler stores this information in the record objects, updates it
when the values of the discriminants are modified and uses it when the objects or its
components are accessed. This information is stored in special components called
implicit components.

An implicit component may contain information which is used when the record object or
several of its components are accessed. In this case the component will be included in any
record object (the implicit component is considered to be declared before any variant
part in the record type declaration). There can be two components of this kind; one is
called RECORD-SIZE and the other VARIANT INDEX.

On the other hand an implicit component may be used to access a given record
component. In that case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are called ARRAYDESCRIPTORs or
RECORD DESCRIPTORs.

a RECORDSIZE

This implicit component is created by the compiler when the record type has a variant
part and its discriminants are defaulted. It contains the size of the storage space
necessary to store the current value of the record object (note that the storage effectively
allocated for the record object may be more than this).

The value of a RECORDSIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORD-SIZE must be large enough to store the maximum
size of any value of the record type. The compiler evaluates an upper bound MS of this
size and then considers the implicit component as having an anonymous integer type
whose range is 0.. MS.

Type Representation Clauses 39

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'RECORD SIZE.

m VARIANT INDEX

This implicit component is created by the compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used when
a discriminant check is to be done.

Component lists that do not contain a variant part are numbered. These numbers are the

possible values of the implicit component VARIANTINDEX.

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND : VEHICLE := CAR) is
record

SPEED: INTEGER;
case KIND is

when AIRCRAFT J CAR = >
WHEELS: INTEGER;
case KIND is

when AIRCRAFT = > -- I
WINGSPAN : INTEGER;

when others = > -2
null;

end case;
when BOAT > -- 3

STEAM : BOOLEAN;
when ROCKET = > -- 4

STAGES : INTEGER;
end case;

end record;

The value of the variant index indicates the set of components that are present in a
record value:

40 Appendir F, Version 5

Variant Index Set

1 (KIND, SPEED, WHEELS, WINGSPAN)
2 (KIND, SPEED, WHEELS)
3 (KIND, SPEED, STEAM)
4 (KIND, SPEED, STAGES)

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Component Interval

KIND --

SPEED - -

WHEELS 1 .. 2
WINGSPAN 1 1
STEAM 3 .. 3
STAGES 4 4

The implicit component VARIANT7INDEX must be large enough to store the number V
of component lists that don't contain variant parts. The compiler treats this implicit
component as having an anonymous integer type whose range is 1 .. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'VARIANTINDEX.

a ARRAY DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAY-DESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, he can obtain the size of
the component using the ASSEMBLY parameter in the COMPILE command.

Type Representation Clauses 41

The compiler treats an implicit component of the kind ARRAY-DESCRIPTOR as having
an anonymous array type. If C is the name of the record component whose subtype is
described by the array descriptor, then this implicit component can be denoted in a
component clause by the implementation generated name C'ARRAYDESCRIPTOR.

n RECORD-DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORD-DESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, he can obtain the size of
the component using the ASSEMBLY parameter in the COMPILE command.

The compiler treats an implicit component of the kind RECORD DESCRIPTOR as
having an anonymous array type. if C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'RECORDDESCRIPTOR.

Suppression of implicit components

The Alsys implementation provides the capability of suppressing the implicit
components RECORD SIZE and/or VARIANT INDEX from a record type. This can be
done using an implementation defined pragma called IMPROVE. The syntax of this
pragma is as follows:

pragma IMPROVE (TIME I SPACE, [ON =>] simple name);

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the compiler inserts implicit components as described above. If on
the other hand SPACE is specified, the compiler only inserts a VARIANT INDEX or a
RECORD SIZE component if this component appears in a record representation clause

42 Appendix F, Version 5

that applies to the record type. A record representation clause can thus be used to keep
one implicit component while suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere that a
representation clause is allowed for this type.

Size of a record subtype

Unless a component clause specifies that a component of a record type has an offset or a
size which cannot be expressed using storage units, the size of a record subtype is
rounded up to the a whole number of storage units.

The size of a constrained record subtype is obtained by adding the sizes of its

components and the sizes of its gaps (if any). This size is not computed at compile time

" when the record subtype has non-static constraints,

" when a component is an array or a record and its size is not computed at compile
time.

The size of an unconstrained record subtype is obtained by adding the sizes of the
components an.! the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated exactly at compile time an upper bound of
this size is used by the compiler to ce.apute the subtype size.

A size specification applied to a record type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
sucn a length clause can be useful to verify that the layout of a record is as expected by
the application.

Size of an object of a record subtype

An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size
iq less than or equal to 8 kb. If the size of the subtype is greater than this, !he object has

Type Representation Clauses 43

the size necessary to store its current value; storage space is allocated and released as the

discriminants of the record change.

Alignment of a record subtype

When no record representation clause applies to its base type, a record subtype is even
byte aligned if it contains a component whose subtype is even byte aligned. Otherwise the
record subtype is byte aligned.

When a record representation clause that does not contain an alignment clause applies
to its base type, a record subtype is even byte aligned if it contains a component whose
subtype is even byte aligned and whose offset is a multiple of 16 bits. Otherwise the
record subtype is byte aligned.

When a record representation clause that contains an alignment clause applies to its base
type, a record subtype has an alignment that obeys the alignment clause An alignment
clause can specify that a record type is byte aligned or even byte aligned.

Address of an object of a record subtype

Provided its alignment is not constrained by a representation clause, the address of an
object of a record subtype is even when its subtype is even byte aligned.

44 Appendix F, Version 5

CHAPTER 5

IMPLEMENTATION-DEPENDENT COMPONENTS

The following forms of implementation-generated names [13.4(8)] are used to denote

implementation-dependent record components, as described in Section 4.8 in the

paragraph on indirect and implicit components:

C'OFFSET
R'RECORDSIZE
R'VARIANTINDEX
R'ARRAY DESCRIPTORs
R'RECORD DESCRIPTORs

where C is the name of a record component and R the name of a record type.

Implementation -Dependent Components 45

46 Appendir F, Version S

CHAPTER 6

ADDRESS CLAUSES

An address clause can be used to specify the address of an object, a program unit or an
entry.

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in [13.5].
When such a clause applies to an object no storage is allocated for it in the program
generated by the compiler. The program accesses the object by using the address
specified in the clause.

in address clause is not allowed for task objects, for unconstrained records whose size is
greater than 8 kb, or for a constant.

Note that the function SYSTEMVALUE, defined in the package SYSTEM, is available to
convert a STRING value into a value of type SYSTEM.ADDRESS, also, the IMPORT
attribute is available to provide the address of an external symbol. (Refer to Chapter 3
and section 2.3)

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current version of the
ccmpiler.

6.3 Address Clauses for Entries

Address clauses for entries ac not supported in the current version of the compiler.

Address Clauses 47

48 Appendix F, Version 5

CHAPTER 7

UNCHECKED CONVERSIONS

Unchecked type conversions are described in [13.10.21. The following restrictions apply
to their use.

Unconstrained arrays are not allowed as target types. Unconstrained record types
without defaulted discriminants are not allowed as target types. Access types to
unconstrained arrays are not allowed as target or source types. Note also that
UNCHECKED-CONVERSION cannot be used for an access to an unconstrained string.

However, if the source and the target types are each scalar or access types, the sizes of the
objects of the source and target types must be equal.

If a composite type is used either as source type or as target type this restriction on the
size does not apply.

If the source and the target types are each of scalar or access type or if they are both of
composite type, the effect of the function is to return the operand.

In other cases the effect of unchecked conversion can be considered as a copy:

" If an unchecked conversion is achieved of a scalar or access source type to a
composite target type, the result of the function is a copy of the source operand.
The result has the size of the source.

" If an unchecked conversion is achieved of a composite source type to a scalar or
access target type, the result of the function is a copy of the source operand. The
result has the size of the target.

Unchecked Conversions 49

50 Appendix F, Version 5

CHAPTER 8

INPUT-OUTPUT CHARACTERISTICS

In this part of the Appendix the implementation-specific aspects of the input-output
system are described.

8.1 Introduction

In Ada, input-output operations are considered to be performed on objects of a certain
file type rather than being performed directly on external files. An external fi:,o is
anything external to the program that can produce a value to be read or receive a value to
be written. Values transferred for a given file must be all of one type.

Generally, in Ada documentation, the term file refers to an object of a certain file type,
whereas a physical manifestation is known as an externalfile. An external file is
characterized by

" its NAME, which is a string defining a legal path name under the current version of
the operating system

" its FORM, which gives implementation-dependent information on file
characteristics.

Both the NAME and the FORM appear explicitly as parameters of the Ada procedures
CREATE and OPEN. Though a file is an object of a certain file type, ultimately the object
has to correspond to an external file. Both CREATE and OPEN associate a NAME of an
external file (of a certain FORM) with a program file object.

Ada input-output operations are provided by means of standard packages ([14]):

SEQUENTIAL 10 A generic package for sequential files of a single element type.

DIRECT_10 A generic package for direct (random) access files.

Input-Output Characteristics 51

TEXT_1O A generic package for human-readable files (text, ASCII).

Note that the notion of standard input and output files is not
appropriate for standalone applications. The exception
USE-ERROR will be raised if a standalone applications
attempts to use either TEXTIO.STANDARDINPUT or
TEXTIO.STANDARDOUTPUT.

1OEXCEPTIONS A package which defines the exceptions needed by the above

three packages.

The generic package LOWLEVEL I0 is not implemented in this version.

The upper bound for index values in DIRECT_1O and for line, column and page numbers
in TEXTO is given by

COUNT'LAST = 2**31 -1

The upper bound for field widths in TEXTO is given by

FIELD'LAST = 255

8.2 The Parameter FORM

The parameter FORM of both the procedures CREATE and OPEN in Ada specifies the
characteristics of the external file involved.

The procedure CREATE establishes a new external file, of a given NAME and FORM, and
associates it with a specified program file object. The external file is created (and the file
object set) with a specified (or default) file mode. If the external file alreadv exists, the
file will be erased. The exception USE-ERROR is raised if the file mode is IN FILE.

Example:

CREATE(F, OUT-FILE, NAME > MYFILE");

52 Appendix F, Version 5

The procedure OPEN associates an existing external file, of a given NAME and FORM,
with a specified program file object. The procedure also sets the current file mode. If
there is an inadmissible change of mode, then the exception USE-ERROR is raised.

The parameter FORM is a string, formed from a list of attributes, with attributes
separated by commas. The string is not case sensitive (so that, for example, HERE and
here are treated alike). (FORM attributes are distinct from Ada attributes.) The
attributes specify-

* File type

* File creator

* File structure

* Buffering

* Appending

The general form of each attribute is a keyword followed by => and then a qualifier. The
arrow and quaifier may sometimes be omitted. The format for an attribute specifier is
thus either of

KEYWORD

KEYWORD = > QUALIFIER

We will discuss each attribute in turn.

File Type

The keyword TYPE ID may be used to define the four of byte type ID for a file. By
default text files have the ID 'TEXTr, other files have the ID "????". The qualifier is
required and is an optionally quoted string.

If the qualifier is not quoted and begins with a dollar sign, 'T, it is interpreted as a 32 bit
hexadecimal value.

Input.Ourput Characteristics 53

Otherwise it is interpreted as a literal string. The string value, excluding quotes, must
not be larger than four characters. If less than four characters it is left justified and blank
filled.

File Creator

The keyword CREATOR ID may be used to define the four of byte creator ID for a file.
By default text files have the ID" " (four spaces), other files have the ID *????". The
qualifier is required and is an optionally quoted string.

If the qualifier is not quoted and begins with a dollar sign, '$', it is intc,-preted as a 32 bit
hexadecimal value.

Otherwise it is interpreted as a literal string. The string value, excluding quotes, must
not be larger than four characters. If less than four characters it is left justified and blank
filled.

File Strucure

(a) Text Files

There is no FORM attribute to define the structure of text files.

A text file consists of a sequence of bytes holding the ASCII codes of characters.

The representation of Ada terminators depends on the file's mode (IN or OUT) and
whether it is associated with a terminal device or a mass storage file; the terminators are
implicit in some cases, the characters present explicitly being as follows:

* Mass storage files and terminal device with mode OUT

end of line: ASCII.CR
end of page: ASCII.CR ASCII.FF

The file length determines implicit page and file terminators at the end.

54 Appendix F, Version 5

Terminal device with mode IN

end of line: ASCII.CR
end of page: ASCI.FF
end of file: Command-Enter

The FF implies a line terminator; the end of file character implies both line and
page terminators.

(b) Binary Files

Two FORM attributes, RECORD-SIZE and RECORDUNIT, control the structure of
binary files.

A binary file can be viewed as a sequence (sequential access) or a set (direct access) of
consecutive RECORDS.

The structure of such a record is:

[HEADER I OBJECT [UNUSEDPART]

and it is formed from up to three items:

" An OBJECT with exactly the same binary representation as the Ada object in the
executable program, possibly including an object descriptor

" A HEADER consisting of two fields (each of 32 bits):

- the length of the object in bytes (except for the length of unconstrained arrays
which is in bits)

- the length of the descriptor in bytes which is always set to 0

" An UNUSEDPART of variable size to permit full control of the record's size.

The HEADER is implemented only if the actual parameter of the instantiation of the
input-output package is unconstrained.

Input-Output Characterstics 55

The file structure attributes take the form:

RECORD-SIZE => size in bytes

RECORDUNIT => size inbytes

Their meaning depends on the object's type (constrained or not) and the file access mode
(sequential or direct access):

a) If the object's type is constrained:

The attribute RECORD-UNIT is illegal

If the attribute RECORD-SIZE is omitted, no UNUSED-PART will be
implemiented: the default RECORD-SIZE is the object's size

. If present, the attribute RECORD SIZE must specify a record size greater
than or equal to the object's size, otherwise the exception USEERROR will
be raised

b) If t c object's type is unconstrained and the file access mode is direct:

- The attribute RECORD UNIT is illegal

The attribute RECORDSIZE has no default value, and if it is not specified,
USEERROR will be raised

An attempt to input or output an object larger than the given RECORD-SIZE
will raise the exception DATA-ERROR

c) If the object's type is unconstrained and the file access mode is sequential:

- The attribute RECORDSIZE is illegal

The default vai,. of the attribute RECORD-UNIT is 1 (byte)

- The record size will be the smallest multiple of the specified (or default)
RECORDUNIT that holds the object and its length. This is the only case
where records of a file may have different sizes.

56 Appendix F, Version 5

Buffering

The buffer size can be specified by the attribute

BUFFER-SIZE = > sizein bytes

A buffer size of 0 means no buffering.

The default value for buffer size depends on the type of the external file and on the file
access mode, as follows:

" If the external file is a "regular" UNIX mass storage file, the default buffer size is the
system's Input-Output block size (typically 1024 or 2048). For other types of UNIX
files (directories, device files, named pipes), the default buffer size is 0 (no
buffering).

" For a file used in direct access mode or the STANDARDOUTPUT file, the default
buffer size is in any case 0.

Appending

Only to be used with the procedure OPEN, the format of this attribute is simply

APPEND

and it means that any output will be placed at the end of the named external file.

In normal circumstances, when an external file is opened, an index is set which points to
the beginning of the file. If the attribute APPEND is present for a sequential or for a text
file, then data transfer will commence at the end of the file. For a direct access file, the
value of the index is set to one more than the number of records in the external file.

This attribute is not applicable to terminal devices.

I1E ERROR is raised when in mode IN FILE.

USE ERROR is raised if the file size is not a multiple of RECORD-SIZE or
RECORD-UNIT.

Input-Output Characteristics 57

58 Appendix F, Version 5

INDEX

Ada identifier 2, 3
Adasubprogram name 1 DIRECT-IO 51
AdaReformat 3
ADDRESS 5 Encoding of
Address clause 47 Access values 26
Address of an object of a(n) Enumeration values 14

Access subtype 27 Fixed point values 23
Array subtype 33 Floating point values 21
Enumeration subtype 17 Integer values 18
Fixed point subtype 25 Task values 27
Floating point subtype 22 Enumeration representation clause 14
Integer subtype 20 EXPORT 2
Record subtype 44 External file 51
Task subtype 28 FORM 51

Alignment of a(n) NAME 51
Access subtype 26 EXTERNALNAME 3
Array subtype 32
Enumeration subtype 17 File 51
Fixed point subtype 25 File Creator 54
Floating point subtype 21 File Structure 54
Integer subtype 20 File Type 53
Record subtype 44 FDCED_8 22
Task subtype 28 FIXED-16 22

APPEND 57 FIXED 32 22
Appending 57 FLOAT 20
ARRAY DESCRIPTOR 5,41,45 FORM 51,52
Assembler 1
Attribute ADDRESS 5 Gap 28,30,33
Attribute IMPORT 6

IEEE standard format 2!
BUFFER SIZE 57 Implicit components 39
Buffering 57 IMPORT 6

INDENT 3
C I Indirect component 35, 38
Collection size 26 INLINE 2
C, nponent clause 35 INTEGER 17
CREATE 51 INTERFACE 1

Index 59

INTERFACE_NAME 1 Pragma SUPPRESS 4

Internal codes of enumeration literals Predefined fixed point type 22
14 Predefined floating point types 20

10EXCEPTIONS 52 Predefined integer types 17
PRIORITY 4

Language_name 2
Layout of a record 33 Record component clause 17, 19, 25
Layout of an array 28 Record representation clause 13, 17,
Length clause 27 20,22,25, 27,28,33, 35, 44
LONGFLOAT 20 RECORD-DESCRIPTOR 5,42,45

RECORD SIZE 5,39,42, 45, 55

Minimum size of a(n) RECORD-UNIT 55
Access subtype 26
Enumeration subtype 14 Selection of the
Fixed point subtype 23 Parent of a fixed point type 23
Floating point subtype 21 Parent of a floating point type 20

Integer subtype 18 Parent of an integer type 17
Task subtype 27 SEQUENTIALIO 51

SHORT INTEGER 17
NAME 51 SHORT SHORT INTEGER 17
Namestring 1,3 Simplename 42

Size of a(n)
OFFSET 5,45 Access subtype 26
OPEN 51 Array subtype 31

Enumeration subtype 15
PACK 4 Fixed point subtype 24
Pascal 1 Floating point subtype 21
Pragma EXPORT 2 Integer subtype 18
Pragma EXTERNALNAME 3 Record subtype 43
Pragma IMPROVE 4, 42 Task subtype 27
Pragma INDENT 3 Size of the objects of a(n)
Pragma IN11NE 2 Access subtype 26
Pragma INTERFACE 1 Array subtype 32
Pragma INTERFACENAME 1 Enumeration subtype 17
Pragma PACK 4, 13, 17, 19, 20, 22, 25, Fixed point subtype 25

27,32 Floating point subtype 21
Pragma PRIORITY 4 Integer subtype 19

60 Appendix F Version 5.2

Record subtype 43
Task subtype 28

Size specification 13, 16, 19, 21, 24, 26,
27,30,32,43

Small of a(n)
Fixed point type 22

SPACE 42
STANDARD 11
Storage for a task activation 27
STORAGE SIZE 26
SUPPRESS 4
Suppression of implicit components 42
SYSTEM 4
SYSTEMADDRESS 6

TEXT 10 52
TIME 42

UNCHECKED-CONVERSION 49

VARIANTINDEX 5, 40,42,45

Inde~r 61

.

